Strong Maximum Principle

Brian Krummel

January 26, 2016

We will continue from the Weak Maximum Principle lecture(s) to consider the strong maximum principle, which states that a subsolution to an elliptic differential equation on a bounded domain Ω only attains its maximum value on the boundary of Ω unless the subsolution is a constant function.

As before, we will consider

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u \geq 0 \text { in } \Omega,
$$

where $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ and $a^{i j}, b^{i}$, and c are (real-valued) functions on Ω. We will assume the strong condition on L of uniform ellipticity, i.e.

$$
\lambda(x)|\xi|^{2} \leq a^{i j}(x) \xi_{i} \xi_{j} \leq \Lambda(x)|\xi|^{2} \text { for all } x \in \Omega, \xi \in \mathbb{R}^{n}
$$

for some $\lambda(x)$ and $\Lambda(x)$ such that $0<\lambda(x) \leq \Lambda(x)$ and

$$
\sup _{x \in \Omega} \frac{\Lambda(x)}{\lambda(x)}<\infty .
$$

Note that we can assume that $\lambda(x)=1$ for all $x \in \Omega$ by replacing L with $\lambda^{-1} L$, in which case uniform ellipticity is equivalent to $\sup _{x \in \Omega} \Lambda(x)<\infty$. Recall from the weak maximum principle lectures that when considering maximum principles, we have three cases depending on the sign of c to determine what type of maximum values $u(y)$ of u for $y \in \bar{\Omega}$ that we consider:
(a) When $c=0$ on Ω, we consider the maximum value of u.
(b) When $c \leq 0$ on Ω, we consider nonnegative maximum values of u, i.e. maximum values where $u(y) \geq 0$.
(c) When we assume no sign restriction on c, we consider zero maximum values of u, i.e. maximum values where $u(y)=0$.

Lemma 1 (Hopf boundary point lemma). Let Ω be an open set in \mathbb{R}^{n} and $y \in \partial \Omega$. Suppose $u: \Omega \cup\{y\} \rightarrow \mathbb{R}$ such that $u \in C^{2}(\Omega)$ and

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u \geq 0 \text { in } \Omega
$$

for some functions $a^{i j}, b^{i}$, and c on Ω. Suppose L is a uniformly elliptic operator and

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}+\sup _{\Omega} \frac{|c|}{\lambda}<\infty .
$$

Suppose
(i) u is continuous at y,
(ii) $u(y)>u(x)$ for all $x \in \Omega$,
(iii) Ω satisfies the interior sphere condition at y, i.e. there is a ball $B=B_{R}(z) \subset \Omega$ with $y \in \partial B$, and
(iv) one of the following holds true:
(a) $c=0$ on Ω,
(b) $c \leq 0$ on Ω and $u(y) \geq 0$.
(c) c has any sign and $u(y)=0$.

Let ν be the outward unit normal to $B_{R}(z)$ at y. Then, if $(\partial u / \partial \nu)(y)$ exists,

$$
\frac{\partial u}{\partial \nu}(y)>0 .
$$

Proof of Cases (a) and (b). Let

$$
\beta=\sup _{\Omega} \frac{|\beta|}{\lambda}+\sup _{\Omega} \frac{|c|}{\lambda} .
$$

Let A be the annulus $A=B_{R}(y) \backslash \overline{B_{R / 2}(y)}$ for $\rho \in(0, R)$ to be determined,

$$
v(x)=e^{-\alpha|x-z|^{2}}-e^{-\alpha R^{2}} \text { for } x \in A
$$

for some constant $\alpha>0$ to be determined. We want to compare $u(x)$ to $u(y)-\varepsilon v(x)$ for $\varepsilon>0$. For $x \in A$,

$$
\begin{aligned}
L v(x) & =e^{-\alpha|x-z|^{2}}\left(\sum_{i, j=1}^{n} 4 \alpha^{2} a^{i j}\left(x_{i}-z_{i}\right)\left(x_{j}-z_{j}\right)-\sum_{i=1}^{n} 2 \alpha\left(a^{i i}+b^{i}\left(x_{i}-z_{i}\right)\right)\right)+c\left(e^{-\alpha|x-z|^{2}}-e^{-\alpha R^{2}}\right) \\
& \geq \lambda e^{-\alpha|x-z|^{2}}\left(4 \alpha^{2}(R / 2)^{2}-2 \alpha(n \Lambda / \lambda+\beta R)-\beta\right) \\
& >0
\end{aligned}
$$

provided α is chosen sufficiently large depending on R, Λ, and β. By linearity and (iv),

$$
L(u(y)-\varepsilon v)=c u(y)-\varepsilon L v<0 \text { in } A
$$

for all $\varepsilon>0$. Hence $L u>L(u(y)-\varepsilon v)$ in A. By (ii) $(u(y)>u(x)$ for all $x \in \Omega), u \leq u(y)=$ $u(y)-\varepsilon v$ on $\partial B_{R}(z)$ and $u<u(y)-\varepsilon v$ on $\partial B_{R / 2}(z)$ provided $\varepsilon>0$ is sufficiently small. By the comparison principle,

$$
u \leq u(y)-\varepsilon v(x) \text { for all } x \in \bar{A}
$$

In other words $u(x)-u(y)+\varepsilon v(x)$ is a nonpositive function on \bar{A} attaining a maximum value of zero at $x=y$, so

$$
\frac{\partial(u-u(y)+\varepsilon v)}{\partial \nu}(y)=\frac{\partial u}{\partial \nu}(y)+\varepsilon \frac{\partial v}{\partial \nu}(y) \geq 0
$$

i.e.

$$
\frac{\partial u}{\partial \nu}(y) \geq-\varepsilon \frac{\partial v}{\partial \nu}(y)=2 \varepsilon \alpha R e^{-\alpha R^{2}}>0 .
$$

Proof of Case (c). Exercise. Let $L_{0}=a^{i j} D_{i j}+b^{i} D_{i}-c_{-}$, where $c=c_{+}-c_{-}$for $c_{+}=\max \{c, 0\}$ and $c_{-}=\max \{-c, 0\}$. Since

$$
L_{0} u=L u-c_{+} u \geq 0 \text { in } \Omega,
$$

using the fact that $u(x)<u(y)=0$ for all $x \in \Omega$. By Case (b),

$$
\frac{\partial u}{\partial \nu}(y)>0 .
$$

Before moving on, note that if Ω is a C^{2} domain, then Ω automatically satisfies the interior sphere condition.

Lemma 2. Suppose Ω is a C^{2} domain in \mathbb{R}^{n}. Then Ω satisfies the interior sphere condition at every $y \in \partial \Omega$.

Proof. Suppose $y \in \partial \Omega$ and after translation suppose $y=0$. Write $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ as $x=\left(x^{\prime}, x_{n}\right)$ where $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$. Since Ω is a C^{2} domain, after a rotation we may write

$$
\Omega \cap B_{\rho}(0)=\left\{\left(x^{\prime}, x_{n}\right) \in B_{\rho}(0): x_{n}>g\left(x^{\prime}\right)\right\}
$$

for some $\rho>0$ and some C^{2} function $g: B_{\rho}^{n-1}(0) \rightarrow \mathbb{R}$ such that $g(0)=0$ and $D g(0)=0$. Note that by Taylor's theorem,

$$
\begin{equation*}
\left|g\left(x^{\prime}\right)\right| \leq M\left|x^{\prime}\right|^{2} \tag{1}
\end{equation*}
$$

for all $x^{\prime} \in B_{\rho}(0)$ for some constant $M \in(0, \infty)$. We claim that for some $R \in(0, \rho / 2)$, the open ball $B_{R}\left(R e_{n}\right)$ is contained in Ω, where $e_{1}, e_{2}, \ldots, e_{n}$ are the standard basis for \mathbb{R}^{n}. Note that $0 \in \partial B_{R}\left(R e_{n}\right)$. Suppose $x=\left(x^{\prime}, x_{n}\right) \in B_{R}\left(R e_{n}\right) \backslash \Omega$. Since $x \in B_{R}\left(R e_{n}\right)$,

$$
\left|x^{\prime}\right|^{2}+\left(x_{n}-R\right)^{2}<R^{2} ;
$$

that is

$$
\begin{equation*}
\left|x^{\prime}\right|^{2}+x_{n}^{2}-2 R x_{n}<0 \tag{2}
\end{equation*}
$$

By (1) and (2),

$$
x_{n}<g\left(x^{\prime}\right) \leq M\left|x^{\prime}\right|^{2}<M\left(2 R x_{n}-x_{n}^{2}\right) \leq 2 M R x_{n} .
$$

Thus if we choose $R<1 /(2 M)$, then $B_{R}\left(R e_{n}\right) \subset \Omega$.
Theorem 1 (Strong maximum principle). Let Ω be a domain set (i.e. connected open set) in \mathbb{R}^{n}. Suppose $u \in C^{0}(\bar{\Omega}) \cap C^{2}(\Omega)$ satisfies

$$
L u=a^{i j} D_{i j} u+b^{i} D_{i} u+c u \geq 0 \text { in } \Omega
$$

for some functions $a^{i j}, b^{i}$, and c on Ω. Suppose L is a uniformly elliptic operator and

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}+\sup _{\Omega} \frac{|c|}{\lambda}<\infty .
$$

Then:
(a) If $c=0$ on Ω, u cannot acheive its maximum value in the interior of Ω unless u is constant.
(b) If $c \leq 0$ on Ω, u cannot acheive a non-negative maximum in the interior of Ω unless u is constant on Ω.
(c) Regardless of the sign of c, u cannot acheive a maximum value of zero in the interior of Ω unless $u \equiv 0$.

Proof. Suppose u is non-constant and u acheives its maximum value M in the interior of Ω. Let $\Omega_{M}=\{x \in \Omega: u(x)<M\}$. Let x_{0} be a point in Ω_{M} that is closer to $\partial \Omega_{M}$ than to $\partial \Omega$. Consider the largest open ball $B=B_{R}\left(x_{0}\right)$ centered at x_{0} that is contained in Ω_{M}. Let y be the point where ∂B touches $\Omega \backslash \Omega_{M}$. Then $y \in \partial B, u(y)=M$, and $u<M$ in ∂B, so by the Hopf boundary point

lemma, $D u(y) \neq 0$. But on the other hand y is a maximum of u in the interior Ω, so $D u(y)=0$. Thus we reach a contradiction.

Corollary 1. Let Ω be an open set in \mathbb{R}^{n}. Let

$$
L=a^{i j} D_{i j}+b^{i} D_{i}+c
$$

for some functions $a^{i j}$, b^{i}, and c on Ω and suppose L is a uniformly elliptic operator and

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}+\sup _{\Omega} \frac{|c|}{\lambda}<\infty .
$$

Suppose $u, v \in C^{2}(\Omega)$ such that $u \leq v$ on Ω and $L u \geq L v$ on Ω. Then either $u \equiv v$ on Ω or $u<v$ on Ω.

Proof. Exercise.
Corollary 2. Let Ω be a C^{2} domain in \mathbb{R}^{n} and $y \in \partial \Omega$. Let

$$
L=a^{i j} D_{i j}+b^{i} D_{i}+c
$$

for some functions $a^{i j}$, b^{i}, and c on Ω and suppose L is a uniformly elliptic operator and

$$
\sup _{\Omega} \frac{\left|b^{i}\right|}{\lambda}+\sup _{\Omega} \frac{|c|}{\lambda}<\infty .
$$

Suppose $u, v \in C^{1}(\Omega \cup\{y\}) \cap C^{2}(\Omega)$ such that $u \leq v$ on Ω, Lu \geq Lv on $\Omega, u(y)=v(y)$, and $D u(y)=D v(y)$. Then $u \equiv v$ on Ω.

Proof. Exercise.
References: Gilbarg and Trudinger, Section 3.2.

