Strong Maximum Principle

Brian Krummel

January 26, 2016

We will continue from the Weak Maximum Principle lecture(s) to consider the strong maximum principle, which states that a subsolution to an elliptic differential equation on a bounded domain Ω only attains its maximum value on the boundary of Ω unless the subsolution is a constant function.

As before, we will consider

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu \ge 0 \text{ in } \Omega,$$

where $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ and a^{ij} , b^i , and c are (real-valued) functions on Ω . We will assume the strong condition on L of uniform ellipticity, i.e.

$$\lambda(x)|\xi|^2 \le a^{ij}(x)\xi_i\xi_j \le \Lambda(x)|\xi|^2$$
 for all $x \in \Omega, \, \xi \in \mathbb{R}^n$

for some $\lambda(x)$ and $\Lambda(x)$ such that $0 < \lambda(x) \leq \Lambda(x)$ and

$$\sup_{x\in\Omega}\frac{\Lambda(x)}{\lambda(x)}<\infty.$$

Note that we can assume that $\lambda(x) = 1$ for all $x \in \Omega$ by replacing L with $\lambda^{-1}L$, in which case uniform ellipticity is equivalent to $\sup_{x\in\Omega} \Lambda(x) < \infty$. Recall from the weak maximum principle lectures that when considering maximum principles, we have three cases depending on the sign of c to determine what type of maximum values u(y) of u for $y \in \overline{\Omega}$ that we consider:

- (a) When c = 0 on Ω , we consider the maximum value of u.
- (b) When $c \leq 0$ on Ω , we consider nonnegative maximum values of u, i.e. maximum values where $u(y) \geq 0$.
- (c) When we assume no sign restriction on c, we consider zero maximum values of u, i.e. maximum values where u(y) = 0.

Lemma 1 (Hopf boundary point lemma). Let Ω be an open set in \mathbb{R}^n and $y \in \partial \Omega$. Suppose $u : \Omega \cup \{y\} \to \mathbb{R}$ such that $u \in C^2(\Omega)$ and

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu \ge 0 \text{ in } \Omega$$

for some functions a^{ij} , b^i , and c on Ω . Suppose L is a uniformly elliptic operator and

$$\sup_{\Omega} \frac{|b^i|}{\lambda} + \sup_{\Omega} \frac{|c|}{\lambda} < \infty.$$

Suppose

- (i) u is continuous at y,
- (ii) u(y) > u(x) for all $x \in \Omega$,
- (iii) Ω satisfies the interior sphere condition at y, i.e. there is a ball $B = B_R(z) \subset \Omega$ with $y \in \partial B$, and
- (iv) one of the following holds true:
 - (a) c = 0 on Ω,
 (b) c ≤ 0 on Ω and u(y) ≥ 0.
 (c) c has any sign and u(y) = 0.

Let ν be the outward unit normal to $B_R(z)$ at y. Then, if $(\partial u/\partial \nu)(y)$ exists,

$$\frac{\partial u}{\partial \nu}(y) > 0.$$

Proof of Cases (a) and (b). Let

$$\beta = \sup_{\Omega} \frac{|\beta|}{\lambda} + \sup_{\Omega} \frac{|c|}{\lambda}.$$

Let A be the annulus $A = B_R(y) \setminus \overline{B_{R/2}(y)}$ for $\rho \in (0, R)$ to be determined,

$$v(x) = e^{-\alpha |x-z|^2} - e^{-\alpha R^2}$$
 for $x \in A$

for some constant $\alpha > 0$ to be determined. We want to compare u(x) to $u(y) - \varepsilon v(x)$ for $\varepsilon > 0$. For $x \in A$,

$$Lv(x) = e^{-\alpha|x-z|^2} \left(\sum_{i,j=1}^n 4\alpha^2 a^{ij} (x_i - z_i) (x_j - z_j) - \sum_{i=1}^n 2\alpha (a^{ii} + b^i (x_i - z_i)) \right) + c(e^{-\alpha|x-z|^2} - e^{-\alpha R^2})$$

$$\geq \lambda e^{-\alpha|x-z|^2} \left(4\alpha^2 (R/2)^2 - 2\alpha (n\Lambda/\lambda + \beta R) - \beta \right)$$

$$> 0$$

provided α is chosen sufficiently large depending on R, A, and β . By linearity and (iv),

$$L(u(y) - \varepsilon v) = cu(y) - \varepsilon Lv < 0 \text{ in } A$$

for all $\varepsilon > 0$. Hence $Lu > L(u(y) - \varepsilon v)$ in A. By (ii) (u(y) > u(x) for all $x \in \Omega$), $u \le u(y) = u(y) - \varepsilon v$ on $\partial B_R(z)$ and $u < u(y) - \varepsilon v$ on $\partial B_{R/2}(z)$ provided $\varepsilon > 0$ is sufficiently small. By the comparison principle,

$$u \le u(y) - \varepsilon v(x)$$
 for all $x \in \overline{A}$.

In other words $u(x) - u(y) + \varepsilon v(x)$ is a nonpositive function on \overline{A} attaining a maximum value of zero at x = y, so

$$\frac{\partial(u-u(y)+\varepsilon v)}{\partial\nu}(y) = \frac{\partial u}{\partial\nu}(y) + \varepsilon \frac{\partial v}{\partial\nu}(y) \ge 0,$$

i.e.

$$\frac{\partial u}{\partial \nu}(y) \ge -\varepsilon \frac{\partial v}{\partial \nu}(y) = 2\varepsilon \alpha R e^{-\alpha R^2} > 0.$$

Proof of Case (c). Exercise. Let $L_0 = a^{ij}D_{ij} + b^iD_i - c_-$, where $c = c_+ - c_-$ for $c_+ = \max\{c, 0\}$ and $c_- = \max\{-c, 0\}$. Since

$$L_0 u = L u - c_+ u \ge 0 \text{ in } \Omega$$

using the fact that u(x) < u(y) = 0 for all $x \in \Omega$. By Case (b),

$$\frac{\partial u}{\partial \nu}(y) > 0.$$

Before moving on, note that if Ω is a C^2 domain, then Ω automatically satisfies the interior sphere condition.

Lemma 2. Suppose Ω is a C^2 domain in \mathbb{R}^n . Then Ω satisfies the interior sphere condition at every $y \in \partial \Omega$.

Proof. Suppose $y \in \partial \Omega$ and after translation suppose y = 0. Write $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ as $x = (x', x_n)$ where $x' = (x_1, x_2, \ldots, x_{n-1})$. Since Ω is a C^2 domain, after a rotation we may write

$$\Omega \cap B_{\rho}(0) = \{ (x', x_n) \in B_{\rho}(0) : x_n > g(x') \}$$

for some $\rho > 0$ and some C^2 function $g: B^{n-1}_{\rho}(0) \to \mathbb{R}$ such that g(0) = 0 and Dg(0) = 0. Note that by Taylor's theorem,

$$|g(x')| \le M|x'|^2 \tag{1}$$

for all $x' \in B_{\rho}(0)$ for some constant $M \in (0, \infty)$. We claim that for some $R \in (0, \rho/2)$, the open ball $B_R(Re_n)$ is contained in Ω , where e_1, e_2, \ldots, e_n are the standard basis for \mathbb{R}^n . Note that $0 \in \partial B_R(Re_n)$. Suppose $x = (x', x_n) \in B_R(Re_n) \setminus \Omega$. Since $x \in B_R(Re_n)$,

$$|x'|^2 + (x_n - R)^2 < R^2;$$

that is

$$|x'|^2 + x_n^2 - 2Rx_n < 0. (2)$$

By (1) and (2),

$$x_n < g(x') \le M|x'|^2 < M(2Rx_n - x_n^2) \le 2MRx_n$$

Thus if we choose R < 1/(2M), then $B_R(Re_n) \subset \Omega$.

Theorem 1 (Strong maximum principle). Let Ω be a domain set (i.e. connected open set) in \mathbb{R}^n . Suppose $u \in C^0(\overline{\Omega}) \cap C^2(\Omega)$ satisfies

$$Lu = a^{ij} D_{ij} u + b^i D_i u + cu \ge 0 \text{ in } \Omega$$

for some functions a^{ij} , b^i , and c on Ω . Suppose L is a uniformly elliptic operator and

$$\sup_{\Omega} \frac{|b^i|}{\lambda} + \sup_{\Omega} \frac{|c|}{\lambda} < \infty$$

Then:

(a) If c = 0 on Ω , u cannot achieve its maximum value in the interior of Ω unless u is constant.

- (b) If $c \leq 0$ on Ω , u cannot achieve a non-negative maximum in the interior of Ω unless u is constant on Ω .
- (c) Regardless of the sign of c, u cannot achieve a maximum value of zero in the interior of Ω unless $u \equiv 0$.

Proof. Suppose u is non-constant and u achieves its maximum value M in the interior of Ω . Let $\Omega_M = \{x \in \Omega : u(x) < M\}$. Let x_0 be a point in Ω_M that is closer to $\partial\Omega_M$ than to $\partial\Omega$. Consider the largest open ball $B = B_R(x_0)$ centered at x_0 that is contained in Ω_M . Let y be the point where ∂B touches $\Omega \setminus \Omega_M$. Then $y \in \partial B$, u(y) = M, and u < M in ∂B , so by the Hopf boundary point

lemma, $Du(y) \neq 0$. But on the other hand y is a maximum of u in the interior Ω , so Du(y) = 0. Thus we reach a contradiction.

Corollary 1. Let Ω be an open set in \mathbb{R}^n . Let

$$L = a^{ij}D_{ij} + b^i D_i + c$$

for some functions a^{ij} , b^i , and c on Ω and suppose L is a uniformly elliptic operator and

$$\sup_{\Omega} \frac{|b^i|}{\lambda} + \sup_{\Omega} \frac{|c|}{\lambda} < \infty.$$

Suppose $u, v \in C^2(\Omega)$ such that $u \leq v$ on Ω and $Lu \geq Lv$ on Ω . Then either $u \equiv v$ on Ω or u < v on Ω .

Proof. Exercise.

Corollary 2. Let Ω be a C^2 domain in \mathbb{R}^n and $y \in \partial \Omega$. Let

$$L = a^{ij}D_{ij} + b^iD_i + c$$

for some functions a^{ij} , b^i , and c on Ω and suppose L is a uniformly elliptic operator and

$$\sup_{\Omega} \frac{|b^i|}{\lambda} + \sup_{\Omega} \frac{|c|}{\lambda} < \infty.$$

Suppose $u, v \in C^1(\Omega \cup \{y\}) \cap C^2(\Omega)$ such that $u \leq v$ on Ω , $Lu \geq Lv$ on Ω , u(y) = v(y), and Du(y) = Dv(y). Then $u \equiv v$ on Ω .

Proof. Exercise.

References: Gilbarg and Trudinger, Section 3.2.