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We will continue from the Weak Maximum Principle lecture(s) to consider the strong mazimum
principle, which states that a subsolution to an elliptic differential equation on a bounded domain
2 only attains its maximum value on the boundary of €2 unless the subsolution is a constant
function.

As before, we will consider

Lu= aile-ju +b'Du+ cu > 0in ©,

where u € C°(Q) N C*(Q) and a¥, b, and ¢ are (real-valued) functions on Q. We will assume the
strong condition on L of uniform ellipticity, i.e.

A@)[€]* < aV(2)6€; < A(x)|¢]? for all z € Q, £ € R”
for some A(z) and A(x) such that 0 < A\(z) < A(z) and
A(z)
vets A(7)

Note that we can assume that A(z) = 1 for all z € Q by replacing L with A™'L, in which case
uniform ellipticity is equivalent to sup,cq A(x) < co. Recall from the weak maximum principle
lectures that when considering maximum principles, we have three cases depending on the sign of
c to determine what type of maximum values u(y) of u for y € Q that we consider:

< Q.

(a) When ¢ =0 on €, we consider the maximum value of w.

(b) When ¢ < 0 on Q, we consider nonnegative maximum values of u, i.e. maximum values
where u(y) > 0.

(¢) When we assume no sign restriction on ¢, we consider zero maximum values of u, i.e. maxi-
mum values where u(y) = 0.

Lemma 1 (Hopf boundary point lemma). Let 2 be an open set in R™ and y € 0. Suppose
u: QU {y} — R such that u € C*(Q) and

Lu= aijDiju + V' D+ cu >0 in Q
for some functions a¥, b*, and ¢ on Q. Suppose L is a uniformly elliptic operator and

sup@—l—supﬂ<oo.
Q A Q A

Suppose



(i) w is continuous at y,
(11) u(y) > u(x) for all x € Q,

(111) Q) satisfies the interior sphere condition at y, i.e. there is a ball B = Br(z) C Q withy € 0B,
and

(iv) one of the following holds true:

(a) ¢ =0 onQ,
(b) ¢ <0 onQ and u(y) > 0.
(¢) ¢ has any sign and u(y) = 0.

Let v be the outward unit normal to Br(z) aty. Then, if (Ou/0v)(y) exists,

Proof of Cases (a) and (b). Let

B—sup@+sup| d

A A
Let A be the annulus A = Bg(y) \ Bg/2(y) for p € (0, R) to be determined,

v(z) = el _ gm0 for p € A

for some constant a > 0 to be determined. We want to compare u(z) to u(y) — ev(x) for £ > 0.
For x € A,

Lo ( )_ efa|z z|? (Z 4042 Z] . Z@ Z2a CL” + bz . Zz))) +C(€7a|x7z‘2 . efaRz)

i,7=1

> Ae " (40%(R/2)? — 2a(nA /A + BR) — 5)
>0

provided « is chosen sufficiently large depending on R, A, and 8. By linearity and (iv),
L(u(y) —ev) = cu(y) —eLv <0in A

for all ¢ > 0. Hence Lu > L(u(y) —ev) in A. By (ii) (u(y) > u(x) for all x € Q), u < u(y) =
u(y) — ev on 0Bg(z) and u < u(y) — v on OBg/s(2) provided € > 0 is sufficiently small. By the
comparison principle,

u < u(y) — ev(z) for all x € A.
In other words u(x) — u(y) + ev(z) is a nonpositive function on A attaining a maximum value of
zero at * =y, so

O(u — u(y) + ev) ou ov
W) () = D) 4202 (y) 2 0,
ie. 9 9
u (% 2
_ > e _ —aR .
5 (y) > eay( y) = 2eaRe >0



Proof of Case (c). Exercise. Let Ly = a" D;; + b'D; — c_, where ¢ = ¢} — c_ for ¢, = max{c, 0}
and c¢_ = max{—c,0}. Since
Lou = Lu—cyu > 01in Q,

using the fact that u(z) < u(y) =0 for all z € Q. By Case (b),

ou
5(9) > 0.
]

Before moving on, note that if Q is a C? domain, then 2 automatically satisfies the interior
sphere condition.

Lemma 2. Suppose Q is a C? domain in R™. Then § satisfies the interior sphere condition at
every y € 0.

Proof. Suppose y € 092 and after translation suppose y = 0. Write x = (z1,29,...,2,) € R" as
r = (2/,x,) where ' = (1,23, ...,2,_1). Since Q is a C? domain, after a rotation we may write

QN B,0) ={(«',z,) € B,(0) : z,, > g(a)}

for some p > 0 and some C? function g : B}~'(0) — R such that g(0) = 0 and Dg(0) = 0. Note
that by Taylor’s theorem,

l9(a")] < Mla"|? (1)
for all 2’ € B,(0) for some constant M € (0,00). We claim that for some R € (0, p/2), the open
ball Br(Re,) is contained in 2, where eq,es,..., e, are the standard basis for R". Note that

0 € OBgr(Re,,). Suppose x = (2, x,) € Br(Re,) \ Q. Since x € Br(Re,),
2'2 + (z, — R)* < R

that is
|2’|? + 22 — 2Rz, < 0. (2)

By (1) and (2),
z, < g(2') < M|2'|> < M(2Rz,, — 22) < 2M Rx,,.

Thus if we choose R < 1/(2M), then Bgr(Re,) C €. O

Theorem 1 (Strong maximum principle). Let Q be a domain set (i.e. connected open set) in R™.

Suppose u € C°(Q) N C(Q) satisfies
Lu= aijDiju + V' Dyu+ cu >0 in Q
for some functions a¥, b', and ¢ on Q. Suppose L is a uniformly elliptic operator and

supm+supm<oo.
a A a A

Then:

(a) If c =0 on 2, u cannot acheive its maximum value in the interior of Q@ unless u is constant.
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(b) If ¢ < 0 on Q, u cannot acheive a non-negative maximum in the interior of Q0 unless u is
constant on ().

(c) Regardless of the sign of ¢, u cannot acheive a mazximum value of zero in the interior of Q
unless u = 0.

Proof. Suppose u is non-constant and u acheives its maximum value M in the interior of €. Let
Qu ={z € Q:u(zr) < M}. Let z be a point in £, that is closer to 0€2, than to 99Q. Consider
the largest open ball B = Bgr(xg) centered at o that is contained in ;. Let y be the point where
0B touches Q\ Q. Then y € 0B, u(y) = M, and u < M in 0B, so by the Hopf boundary point

lemma, Du(y) # 0. But on the other hand y is a maximum of u in the interior €2, so Du(y) = 0.
Thus we reach a contradiction. O

Corollary 1. Let Q be an open set in R™. Let
L= aijDi]’ + bZDZ +c
for some functions a”, b*, and ¢ on Q0 and suppose L is a uniformly elliptic operator and

supm+sup|£|<oo.
Q A Q A

Suppose u,v € C*(Q) such that u < v on Q and Lu > Lv on Q. Then either u =v on Q oru < v
on Q.

Proof. Exercise. O]
Corollary 2. Let Q be a C? domain in R™ and y € 0. Let

L=ad"D;j +b'D;+c
for some functions a¥, b*, and ¢ on Q and suppose L is a uniformly elliptic operator and

supm+supﬂ<oo.
Q A Q A

Suppose u,v € CH(Q U {y}) N C*(Q) such that u < v on Q, Lu > Lv on Q, u(y) = v(y), and
Du(y) = Dv(y). Then u=v on .

Proof. Exercise. m

References: Gilbarg and Trudinger, Section 3.2.



